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Executive Summary

This proposal advocates the simultaneous measurement of the spectral, timing, and polarization properties
of X-ray sources to understand the continuum spectrum. This will enable the direct measurement of the
fundamental properties of compact objects and provide answers to several basic and pressing questions in
high energy astrophysics like black hole growth, jet emission, central engines of gamma-ray bursts, nature

of dark energy, and possibly the identification of dark matter.

This will be achieved by the following enabling technologies:

e Low Energy Proportional Counter: The ‘rugged’ proportional counters would be re-designed to
obtain the lowest mass to area ratio of ~10 kg per m?, compared to the >100 kg per m? of RXTE/PCA.
Though Silicon detectors can be fabricated at this mass budget, proportional counters are rugged,
cheap, and easy to fabricate.

e ‘Semiwich’ detectors: A sandwich of Silicon and CZT detectors would be developed, with all the
associated cooling and packaging techniques to achieve a) ~200 eV resolution at 6 keV and sub-keV
resolution up to 60 keV b) >90% efficiency in 2 — 60 keV region c) background reduction d) modest
position resolution (a few mm?), and e) scalability to large area.

These detectors would be configured as:

e SuperMon: This is a series of three micro-satellites (~150 kg, each) of identical configuration, making
uninterrupted observations of bright X-ray sources. The low weight proportional counters will act as a
shallow all-sky monitors (in BATSE-type open configuration) and the ‘semiwich’ detectors of area ~400
cm? positioned below a helium filled position sensitive proportional counters will have the spectral,
timing, and polarization capabilities to study bright X-ray sources. Fast maneuverability and robust
onboard intelligence will make this an unique system to study GRBs, X-ray flashes, X-ray binaries and

bright Seyfert galaxies.

e Black Hole Tracker: This is a medium class satellite (~2000 kg) with 5 m? proportional counters
in all-sky as well as pointing operational mode, 5000 cm? ‘semiwich’ detectors with He proportional
counters to have spectro-polarimetric capabilities and 500 cm? focusing detector with Silicon Drift
Detectors operating in 0.5 — 30.0 keV region. This will enable the detailed spectral, timing, and

polarization studies of a large number of X-ray sources.

It is estimated that this configuration will satisfy most of the primary IXO objectives at a very low cost (450
million USD) and short time span (4 — 5 years). Further, it is envisaged that a judicious harnessing of the
vast expertise of NASA with the enormous young man-power available in the developing countries, along
with a progressive mind set of using existing technologies (primarily using computational technologies) in
novel ways and having a net-enabled collaboration, can push new ideas into fruition in a very optimum way.

This methodology has the potential of making space exploration fast, cheap, and diverse.
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Science motivation and objectives

X-ray astronomy is a mature and powerful tool to study the cosmos. The mind-boggling advances in the
sensitivity of X-ray telescopes, from Finstein to Chandra Observatories, has ensured that X-rays are detected
from practically every type of cosmic objects, ranging from solar system objects (moon and the planets) to

distant quasars.
Though powerful, X-ray astronomy has remained a blunt tool.

Broadly speaking, X-ray photons carry two types of messages from the cosmos. The low energy X-rays,
below a few keV, have wavelengths corresponding to atomic dimensions, and they tell the tale of atoms at
various ionization states. By and large they tell the tale of hot thermal plasmas, the relics of some violent
phenomena which has already taken place. X-rays of higher energies (above a few keV), on the other hand,
are the bye-products of all impulsive particle acceleration sites: planetary atmospheres, solar and stellar
active regions, accretion disc around compact objects, magnetic quakes in magnetars; also when compact
objects coalesce and release humongous amount of energy at cosmological distances, which are observed as

Gamma-Ray Bursts or X-ray Flashes.

X-ray astronomy has remained blunt in its ability to decipher the clues available in the

continuum spectra to find out more about the accelerating sites.

Let me amplify this statement with a parallel example: the advances in stellar structure and evolution
theory in the last century was stupendous. White dwarves were discovered in 1910; by 1930 their complete
structure was figured out. It was done by essentially applying the emerging tools of modern physics to under-
stand the structure. But, crucially, stellar spectroscopy provided a robust check-point for every theoretical

calculations.

Compared to this, the first stellar X-ray source was discovered in 1962. Though within a few years it
was figured out that compact objects had something to do about it, a quantitative description still eludes
us. For example, in the case of black hole transients, observers can define a “small number of states and
their association with jets providing a good frame work to base theoretical studies” (Belloni et al, 2011,
arxiv1109.3388), while, theorists, claiming that there is remarkable success in the study of black hole accretion
disks, lament that the most pressing problem of the day is to match “our theretical knowledge to actual

observed phenomena” (Abramowicz & Fragile, arxiv1104.5400).

For example, whether the source of jet power is the spin of the black hole or the stored magnetic field
is still a matter of conjecture. Further, the connection between X-ray binaries and other objects in the
universe whose source of energy is thought to be accretion, like Active Galactic Nuclei and the beacons of

the universe, Gamma-ray Bursts, are generally quite nebulous, and at best phenomenological.

Essentially, good quality continuum spectra of cosmic X-ray sources are lacking, primarily because high
energy observation is technically extremely challenging. As discussed in Rao et al. (2006; SuperMon proposal
- see page 9), “apart from the usual technical difficulty of having to conduct these experiments from space,
lack of effective focusing techniques in higher energies, low number of incident photons necessitating the use

of very large area detectors and the high background caused by the ubiquitous high energy cosmic rays are



some of the serious problems affecting this critical but challenging observational field in astrophysics. In
particular, one of the major problems in making precise hard X-ray spectral measurements is the effect of
Compton scattering. Its effect is two-fold. First the ubiquitous Cosmic Diffuse X-ray Background in the
energy range above 100 keV deposit part of their energy through Compton scattering, hence generating high
background in < 100 keV band. Second, source photons above 100 keV too can undergo Compton scattering,
thus making the detector response uncertain. To achieve good spectroscopic capabilities in the hard X-ray
band, it is necessary to have good background measurement, energy bandwidth, and sufficient counts in a

large number of energy channels.”

One other aspect of non-thermal astrophysical phenomena is that the inherent nature of energy generation
is highly time variable. Hence, to decipher the source emission mechanism and structure, one needs time
variability characterisation, spectral information, and, to further reduce the possible degeneracies in the
source structure, to have polarization information. Hence, the baseline requirement for a future X-ray

astronomy mission would be:

e Good bandwidth: 2 — 60 keV to cover the various emission mechanisms like reflection, cyclotron lines,

thermal/ non-thermal components etc.

Good energy resolution: at least sub-keV resolution throughout the energy range.

Good sensitivity: detection area large enough for making spectro-temporal measurements.

Good background reduction: having multiple layered detectors.

Good response and polarization sensitivity: the ubiquitous Compton scattering can be used to measure
the polarization (upto 1% MDP for sources brighter than 100 mCrab).

It is envisaged that by using the enabling technologies of developing ‘semiwich’ detectors and low energy
proportional counters, most of the above requirements would be satisfied. Further, a series of micro-satellites
(SuperMon) would be used for bright sources and large area detectors in a small satellite, Black Hole Tracker,

would be used to study several thousand X-ray sources.

Enabling technologies: ‘semiwich’ and LEPC detectors

New hard X-ray ‘semiwich’ detector: To have a good hard X-ray detector operating in the energy
range of 2 — 60 keV, with good energy resolution and good background reduction technique, we can use a
phoswich type background reduction technique along with a solid state detector type energy resolution. Small
area Silicon detectors, with excellent energy resolution, operating in 0.5 — 15 keV range, are commercially
available. Using such detectors, in a large area format, in conjunction with a CZT detector in phoswich mode
is a good solution. This requires some technical innovation like using strips of Si detectors and using low
noise FET based cooled amplifiers, developing quick readout system, careful packaging with a CZT detector,

and an appropriate mechanical design for efficient cooling.
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The technology needed for the above is available and some amount of R&D work is needed to realize such
detectors in a large area format.

Low Energy proportional counters (LEPC): : Proportional counters, the work-horses of X-ray
astronomy, are extremely well understood and it is possible to build these detectors in a large area format.
Some innovative designs in pressure vessels are required to make them with an extremely low mass-to-area
ratio of <10 kg m~2.

SuperMon

The continuum X-ray spectro-photometry with polarimetric ability in the 2 — 60 keV region will yield
unprecedented information on the non-thermal astrophysical sites like accretion disks and jets. Particularly
in the field of Gamma-ray bursts, where it is difficult to make good spectro-polarimetric observations, it
is expected to yield a rich harvest. Hence a nimble micro-satellite, with automatic pointing capabilities,
will be able to monitor GRBs, X-ray flashes, X-ray binaries and bright AGNs. Three such satellites, called
SuperMon, will help in continuously monitoring a given source, as and when required.

The basic detector is a 400 cm? semiwich detector located below a helium filled position sensitive pro-
portional counter, giving spectral, timing, and polarization information of bright X-ray sources, including
gamma-ray bursts (GRBs). The low-weight proportional counters are used as an all sky open detector at
low energy X-rays. Since in such background dominated detectors signal to noise ratio goes as the square
root of background, a low energy detector has a better sensitivity so long as v < (3/2, where « and 3 are the
power-law energy indices of the source and background spectra, respectively. A set of 1000 cm? proportional
counters could be as sensitive as BATSE. And, having a low energy detector for triggering will be more
sensitive to GRBs with lower Ep.,; values, which will probably probe larger redshifts and deeper into the

universe.

The BATSE concept, that is the ratio of counts in detectors mounted at large angles gives some idea of
incident angle, is good enough for a few degree localisation. Since low energy X-rays are easy to block, an
improvisation in the shadowing concept by arranging vertical walls can lead to localization correct to half
a degree or so. Hence, using low weight proportional counters in BATSE configuration around a collimated
low background ‘semiwich’ detector will lead to a small weight (~ 40 kg) and the payload can be turned at
any direction in a second or two. Add a sophisticated onboard software, and you have a nice ‘dancing diva’

in the sky doing wonders for the subject of transient X-ray sky.

To optimize the diverse needs of all sky monitoring like a) need to know the occurrence of bright transients
within a few hours b) high time resolution observations of bright pulsars and other interesting objects like
black hole binaries and c) regular and persistent observations of AGNs, the LEPC detectors are used for
shallow all sky monitoring and the ‘seniwich’ detector, in a dancing mode, distributing its time in an optimum

way to the diverse needs, is used for deep monitoring.

The instrument configuration is given in Figure 1 (see page 10), along with a basic sketch of the detector

mounting arrangement. The salient characteristics of the detectors are:
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LEPC detectors: The Low Energy Proportional Counters (LEPC) will have an energy range of 2 —
10 keV, area ~1000 cm?, localization capability of 0.5 degrees for GRBs of fluence >1076 erg cm?, all
sky monitoring capability of 10 mCrab per day. Four such LEPC detectors will cover a solid angle of 3 m

steradians and they will also act as an active anti-coincidence shield for the spectroscopic detectors.

‘Semiwich’ detectors: A sandwich of 0.5 mm Si + 2 mm CZT detectors, cooled to -35° C by active as
well as passive cooling, will be having an area of 400 cm?, energy range 2 — 60 keV (collimated) and upto
150 keV (for all sky), positioned below ~ 3 cm thick He filled proportional counter (HePC), with passive
collimator (FOV ~2° and coded aperture mask of position resolution a few arc-minutes). This combination
will have a polarization sensitivity of 1% MDP in the 5 — 60 keV range for sources brighter than 100 mCrab
(in 10° s).

Such a detector combination will yield:

e Detection of 300 GRBs and localization of 150 of them.
o Detection of 150 XRFs and localization of 75 of them.
e Redshift measurement (by coordinated ground observations) of 100 GRBs and 50 XRFs.

e Spectral evolution of new X-ray transients and their localization which will lead to the measurement

of their black holes mass.

e Tracking of a dozen Galactic black hole sources on a continuous basis to measure their state transition,

class transition and correlation with other wavelength emission.
e Tracking of a dozen bright X-ray pulsars to measure their pulse and binary period variation.
e The X-ray spectra & variability of 100 X-ray sources on a continuous basis.
e Detection of X-ray bursts from a dozen X-ray binaries and quantifying the neutron star parameters.

e Tracking of a dozen AGNs to identify X-ray QPOs in them.

A combination of three SuperMon satellites in a low earth orbit will allow uninterrupted observation of a
source, if required. With this superior spectro-photometric capabilities along with polarization, this set of
satellites will provide a rich harvest of observations to precisely pin down the emission mechanism in all the
bright sources. A clear understanding of the emission mechanism of GRBs will help to use these beacons of
the universe as standard candles (all the way upto a redshift of 8) which will help in a precise measurement
of GRB Hubble diagram and thus helping us to understand the dark energy. Further, a precise knowledge
of the GRB emission mechanism will also help us to use them as sources shining from the background and

understanding all the intervening objects, including dark matter.

Black Hole Tracker

The enabling technology of LEPC detector can be used to design and manufacture a 50,000 cm? detector
with a weight less than 50 kg. It can be fabricated in a deployable envelop and the collimators can be

designed (using MEMS technology) to enable automatic pointing of any source. Apart from high time
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resolution observations of bright X-ray sources such a detector can also act as an omni-directional GRB/
XRF identifier. The auto-collimators could be programmed to localize the newly detected GRBs / XRFs
and tracking of multiple sources in an optimum way could be established. Similarly, the ‘semiwich’ detectors
with HePCs for polarization studies can be built with an area about 5,000 cm? in less than 300 kg weight.
This will allow for the detection of precise X-ray spectra of a large number of faint X-ray sources. Focusing
hard X-ray detectors of modest area can complement these measurements. Hence the comprehensive X-ray
Astronomy mission will have the following characteristics: a deployable LEPC detectors with auto-collimators
to make high-time resolution observations of X-ray sources and to detect the faintest GRBs/ XRFs; a large
area SiCZT detectors to make precise spectroscopic observations in 2 — 60 keV region; four focusing X-ray

detectors to make precise Fe line spectroscopy and continuum spectroscopy upto 30 keV.

The instrument configuration is given in Figure 2 (see page 10).

Methodology

The technology scenario, worldwide, is making a remarkable transformation. Incremental, widely spread,
software driven technological transformation with quick turn over is the order of the day. Space astronomy
must seize this opportunity and adapt itself: instead of long drawn out mega projects, it may be worthwhile to
try out quick multi-faceted projects with specific ‘niche’ technologies. The technological advances advocated
in this proposal are quick and topical and can be realized in the time-frame of one to two years.

Further, the final science product crucially depends on careful analysis and modelling. Getting highly
sensitive continuum spectroscopic data is only one part of the story. One needs a large number of interested
theoretician and model builders to get to the bottom of the problems like what happens close to a black hole
and how black holes grow. Instead of the money driven science push (“get guest observations accepted, then
get 1 dollar per second”), it is worthwhile to try out science-driven methods: put high quality data in the
web and let the best brains in the world work on them.

Well, the best brains in the world could be busy elsewhere ! But there exists a vast pool of interested
young minds, particularly in the developing world, still stars in their eyes and hungry for the best data in
the world. A judicious use of these resources can easily complete the proposed project in about four to five

years.
Hence a possible methodology to realize this project could be as follows:
Step 1: Complete a critical evaluation of the science aspects of this proposal.

Step 2: Under NASA leadership, sub-divide this project in some half a dozen independent projects (like,
say, developing the ‘semiwich’ detectors, developing the LEPC detectors, etc.).

step 3: For each sub-division, strike tripartite agreement between a) NASA for its leadership b) an

established US research center for technical abilities ¢) an emerging learning center for student base.

step 4: Realise all the sub-parts and the complete entity in quick time, in the spirit of community
partnership.

I am sure, this methodology has the potential of evolving into a robust futuristic trend for realizing many
interesting science problems, particularly in space astronomy.
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Science Objectives: comparison with 1XO

Science Question

IXO Measurement

Present proposal:

measurement

Fraction of IXO

objectives satisfied

What happens close
to a black hole ?

Time resolved high resolution
spectroscopy of ... stellar mass

and supermassive black holes.

Joint spectral, timing &
polarization measurement
of stellar mass and

supermassive black holes.

Almost as good,
if not better.

When and how did
supermassive black

holes grow 7

Measure the spin
distribution of

supermassive black holes.

Measure the spin
AND accretion
rate of bright AGNs

Almost as good,
if not better.

How does large
scale structure

evolve ?

(i). High resolution spectra
using AGN as illuminating
sources.

(ii.) High resolution spectra
of clusters to measure

mass and composition.

Use GRBs as

illuminating sources.

A long shot.
Maybe possible

Cosmic feedback

Measure metallicity and
velocity structure of hot
gas in galaxies and

clusters.

Only wide band
spectra of nearby

clusters.

Cannot be
satisfied

How does matter
behave at very
high density ?

Equation of state of
neutron stars through

spectroscopy & timing.

Spectroscopy, timing &
polarimetry of

neutron stars.

Almost as good,
if not better.

Science Objectives: New results

Science Question | Present proposal: Comments
measurements
What is the nature Make precise spectral and A distinct
of Dark Energy 7 polarization measurements of | possibility
GRBs and use them
as standard candlles
What is the nature | Study the behaviour of A long shot.
of Dark Matter ? GRBs and study the
intervening objects
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Rough order of magnitude cost

Cost of the Project (in Million US Dollars (MUSD)): 450
Enabling technology: ‘semiwich’ detectors: 15 MUSD

Small area Si/ CZT detectors are commercially available for a few thousand dollars. With a NRE cost of
5 MUSD, large area (16 cm?) ‘semiwich’ detectors could be built for similar costs. Another 5 MUSD can be

used for manufacturing these detectors in large quantities (1000 numbers) and testing them.
Enabling technology: LEPC detectors: 10 MUSD
SuperMon satellites: 75 MUSD
SuperMon are micro-satellites and can be built and launched at a cost of 25 MUSD each.
Black hole tracker: 200 MUSD

This is a medium class satellite (600 — 800 kg payload; 1500 — 2000 kg satellite) and it can be fabricated
and launched in about 200 MUSD.

Other expenditures: 150 MUSD

This includes management cost, data analysis cost, observatory running cost etc.

Conclusions

It is argued here that a spectro-polarimeter will satisfy most of the science objectives of IXO. A preliminary

version of this proposal was submitted to ISRO:

Rao, A. R., K.P. Singh, S.K. Ghosh, M.N. Vahia, J.S. Yadav, D.K. Ojha, M.R. Shah, S.K. Chakrabarti,
A. Nandi, D. Bhattacharya, S. Seetha, Ram Sagar, P. Vivekananda Rao, 2006,
A super Monitor for GRBs, X-ray Flashes and Black Holes (SuperMon) (A proposal submitted to ISRO),

Available at: ftp://deli.tifr.res.in/pub/ARRao_projects/ARRao_supermon.pdf

Acknowledgements: I thank the SuperMon team for some inputs and Santosh Vadawale for discussions.



— 10 —

H\H\\H\M\HHHHHHHM 'MH% HHHHH\HH il

=
)
3
o]
«Q _‘ LQ _‘
Q «Q
j < : <
E 5 S 3
e ® ) 5
) a = ]
- o g N N —
m @ Q 9 @ m
o a a o o o
b 8 gl ¢ g 3
2 ] >
<
HePC
——— ———— ——--\=
____ﬁ
(ov4)

Fig. 1.— Left: SuperMon satellite. Four Low Energy Proportional Counters (LEPC) surrounding, in
the center, (from bottom to top) a Si+CZT combination detector, He filled Proportional Counter (HePC),

collimator (2° x 2°) and a Coded Aperture Mask. Right: The detector configuration for spectro-polarimetric
observations is shown.

Fig. 2.— Black Hole Tracker: A scaled up version of SuperMon, along with a very large area deployable
LEPC of total area 5 m? and four focusing soft X-ray detectors in the four corners.



